BROWNSVILLE ISD

Curriculum Department

Science Science Streamlined

G08 Science 1-6W 1920

8th Grade

District 6 Weeks 1st

Regular English Version

Student ID Student Name Score(S)

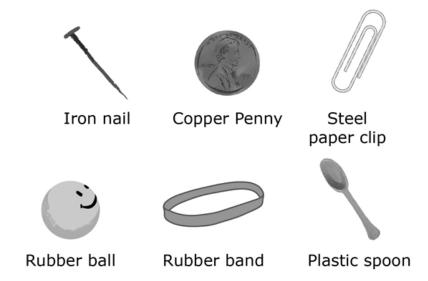
DIRECTIONS

Read each question carefully. Determine the best answer to the question from the four answer choices provided. Then fill in the answer on your answer document.

- 1 A student performs a chemical reaction in the presence of her teacher during a science class. A chemical reaction occurs in an open container. During the reaction, bubbles are observed, and a gas is produced. During the post-reaction analysis, the student notices that the reactants weighed 20 grams when she started, and the product weighed 17 grams. What happened during this process?
 - A The reaction violated the law of conservation of mass.
 - **B** The gas that was produced escaped.
 - **C** Mass was destroyed during the chemical reaction.
 - **D** Mass was created during the chemical reaction.
- **2** Chloe is currently watching a glass beaker undergo a chemical reaction. She then develops a chemical burn in her eyes requiring intervention. Which of the following would have prevented her from getting a burn in her eyes?
 - **F** Changing the container of the reaction
 - **G** Wearing gloves
 - **H** Wearing goggles
 - **J** Moving the beaker towards her

- **3** Which of the following tools could be used to see what a cell looks like to the naked eye?
 - A An electron microscope
 - **B** A spectrophotometer
 - **C** A microscope
 - **D** A magnifying glass

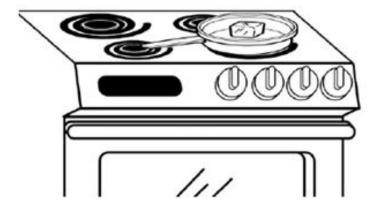
4


- Less dense than other metals
- Highly reactive with reactivity increasing moving down the group
- Largest atomic radius of elements in their period
- One valence electron

Which of the following groups of the periodic table is described in the list above?

- **F** Noble gasses
- **G** Halogens
- H Alkali earth
- **J** Alkali

5



Which of the following instruments would be ideal to measure the combined weight of a steel paper clip and a rubber ball?

- A A graduated cylinder
- **B** A thermometer
- **C** A ruler
- **D** A springscale
- 6 Which of the following would be used to help stop a chemical burn on the hands?
 - **F** A pair of gloves
 - **G** A fire blanket
 - **H** Emergency shower/eyewash station
 - J A fire extinguisher

7 A student was learning how to heat butter on a stove in her cooking class when the pan caught on fire.

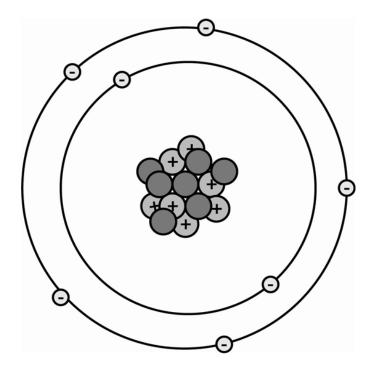
Which of the following devices could be used to quickly and safely put out a fire?

- A A pair of eye goggles
- **B** A fire extinguisher
- **C** An eyewash station
- **D** An apron

8 An atom was being analyzed by a spectrophotometer. The results of the unknown atom are the following:

Protons: 15Neutrons: 30Electrons: 15

Which of the following is the correct mass of the atom?

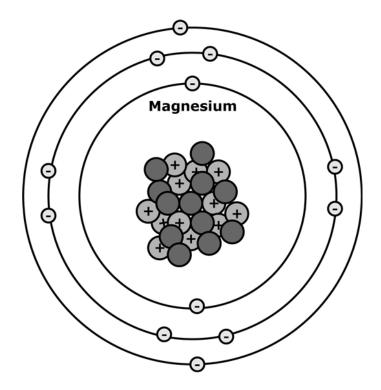

- **F** 60 amu
- **G** 15 amu
- **H** 30 amu
- **J** 45 amu
- **9** Students write the starting phase of matter, ending phase of matter, and note any observations in their lab notebooks. Their data table is shown below.

Experiment	Starting Phase	Ending Phase	Observations				
1	Solid	Liquid	Bubbles appeared				
2	Liquid	Liquid	Changed color from blue to orange				
3	Gas	Gas	Blue flame emitted				

Which of the following showed evidence of a chemical reaction?

- **A** Experiment 1 only
- **B** Experiment 1 and Experiment 2 only
- **C** Experiment 3 only
- **D** All three experiments showed evidence of a chemical reaction.

The portion of an atom which contains the highest mass, yet the smallest volume, would best be described as the -


- **F** orbitals
- **G** protons
- **H** nucleus
- J electron cloud

11 Four students in Mr. Static's class were asked to name the parts of an atom that determine the atom's identity and chemical properties. The student's responses are shown in the table below.

Student	Part of Atom That Determines Properties	Part of Atom That Determines Chemical Properties				
Sara	Electrons	Protons				
Brittany	Neutrons	Electron cloud				
Oanh	Valence electrons	Neutrons				
Maggie	Protons	Valence electrons				

Which student's response is correct?

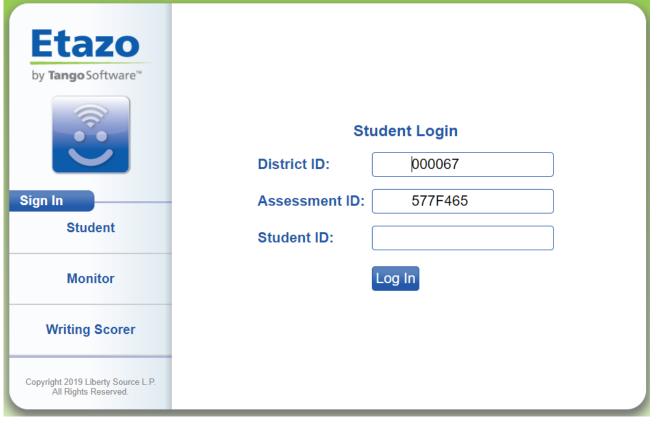
- **A** Maggie
- **B** Sara
- **C** Brittany
- **D** Oanh

When studying an atomic model with the goal of identifying the element, the best way to determine an element's identity is to -

- **F** determine the number of isotopes present
- **G** identify the electrons in each orbital
- **H** draw the electron configuration
- **J** count the number of protons in the nucleus

Bleach (solid)	Sodium perborate	NaBO ₃			
Borax	Sodium tetraborate decahydrate	Na ₂ B ₄ O ₇ +10H ₂ O			
Brimstone	Sulfur	S			
Cream of tartar	Potassium hydrogen tartrate	KHC ₄ H ₄ O ₆			
Epsom salt	Magnesium sulfate heptahydrate	MgSO ₄ & H ₂ O			
Freon	Dichlorodiflooromethane	CF ₂ Cl ₂			

Which compound in the chart above contains the largest amount of oxygen atoms?


- **A** Bleach
- **B** Borax
- **C** Epsom Salt
- **D** Cream of Tartar
- **14** The purpose of a subscript in a chemical formula is to
 - **F** describe how many atoms of an element make up the compound
 - **G** describe how many atoms make up the compound
 - **H** describe how many cations are needed to make a compound have an overall positive charge
 - **J** describe how many anions are needed to make a compound have an overall negative charge

- 15 A student performs a chemical reaction in the presence of her teacher during a science class. A chemical reaction occurs in an open container. During the reaction, bubbles are observed, and a gas is produced. During the post-reaction analysis, the student notices that the reactants weighed 20 grams when she started, and the product weighed 17 grams. What happened during this process?
 - **A** The reaction violated the law of conservation of mass.
 - **B** The gas that was produced escaped.
 - **C** Mass was destroyed during the chemical reaction.
 - **D** Mass was created during the chemical reaction.

BROWNSVILLE ISD Curriculum Department 000067 Student Name: _ Student ID: Teacher Name: Score: _ G08 Science 1-6W 1920 Document ID: **Instructions:** Bubble in your response for each question number that you answered. 1 A B C D 2 F G H J 3 A B C D 4 F G H J 5 (A) (B) (C) (D) 6 F G H J 7 (A) (B) (C) (D) 8 F G H J 9 (A) (B) (C) (D) 10 F G H J 11 (A) (B) (C) (D) 12 F G H J 13 (A) (B) (C) (D) 14 F G H J 15 (A) (B) (C) (D)

STAAR GRADE 8 SCIENCE REFERENCE MATERIALS

PERIODIC TABLE OF THE ELEMENTS

	1 1A																	18 8A
	1]			Ate	omic numbe	er —		7									2
1	H 1.008	2				Symbo	ol — —	-Si					13	14	15	16	17	He 4.0026
	Hydrogen	2A				Atomic mas	s	28.085					3 A	4 A	5 A	6A	7 A	4.0026 Helium
2	3	4			•	mornio mao							5	6	7	8	9	10
	Li	Be	Silicon Name B C N O F									F	Ne					
	6.94	9.0122											10.81	12.011	14.007	15.999	18.998	20.180
	Lithium 11	Beryllium 12	Boron 12									13	Carbon 14	Nitrogen 15	Oxygen 16	Fluorine 17	Neon 18	
	Na	Mg											AĬ	Si	P	S	Ċί	Ar
3	22.990	24.305	3	4	5	6	7	۱.8	9	10 .	11	12	26.982	28.085	30.974	32.06	35.45	39.948
	Sodium	Magnesium	3B	4B	5B	6B	7B		8B		1B	2B	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	78.971	79.904	83.798
	Potassium 37	Calcium 38	Scandium 39	Titanium 40	Vanadium 41	Chromium 42	Manganese 43	Iron 44	Cobalt 45	Nickel 46	Copper 47	Zinc 48	Gallium 49	Germanium 50	Arsenic 51	Selenium 52	Bromine 53	Krypton 54
_	Rb	Sr	Ÿ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cď	Ϊ́n	Sn	Sb	Te	Ĭ	Xe
5	85.468	87.62	8 8.906	91.224	92.906	95.95	'0	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium		Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98			
	Cesium 87	Barium 88	Lutetium 103	Hafnium 104	Tantalum 105	Tungsten 106	Rhenium 107	Osmium 108	Iridium 109	Platinum 110	Gold 111	Mercury 112	Thallium 113	Lead 114	Bismuth 115	Polonium 116	Astatine 117	Radon 118
_	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
7	٠.	''"	-	111		Og	511	113	IVIC	D 3	119	011	'`''	٠.,	IVIC		13	Og
	Francium	Radium	Lawrencium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
		,					listed for ele	ements with										
			1			r common is		0.1		22	0.4							1
		\	57	58 Ce	59 Pr	60 Nd	61 Dec	62 Cm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	69 T	70 Yb		
I	_anthani	de Series	s 🔪	La				Pm	Sm	-			Dy	_		Tm	_	
	\			138.91 Lanthanum	140.12 Cerium	140.91 Praseodymium	144.24 Neodymium	Promethium	150.36 Samarium	151.96 Europium	157.25 Gadolinium	158.93 Terbium	162.50 Dysprosium	164.93 Holmium	167.26 Erbium	168.93 Thulium	173.05 Ytterbium	
`				89	90	91	92	93	94	95	96	97	98	99	100	101	102	1
	Actinide Series		s \	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
			\		232.04	231.04	238.03	_										
			V	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium]

Updated 2017