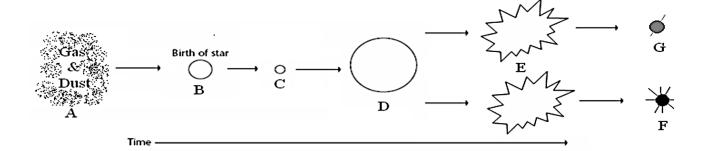

Life Cycle of a Star



<u>A STAR IS BORN</u> – All stars start as a **nebula**. A **nebula** is a large cloud of hydrogen gas and dust. Gravity can pull some of the gases and dust together. The contracting cloud is then called a **protostar**. A **protostar** is the earliest stage of a star's life. A star is born when the gas and dust from a nebula become so hot that nuclear fusion starts. Once a star has "turned on" it is known as a main sequence star. When a main sequence star begins to run out of hydrogen fuel, the star becomes a red giant or a red super giant.

<u>THE DEATH OF A LOW OR MEDIUM MASS STAR.</u> After a low or medium mass or star has become a red giant the outer parts grow bigger and drift into space, forming a cloud of gas called a **planetary nebula**. The bluewhite hot core of the star that is left behind cools and becomes a **white dwarf**. The white dwarf eventually runs out of fuel and dies as a **black dwarf**.

<u>THE DEATH OF A HIGH MASS STAR</u>. A dying **red super giant** star can suddenly explode. The explosion is called a **supernova**. After the star explodes, some of the materials from the star are left behind. This material may form a **neutron star**. **Neutron stars** are the remains of high-mass stars. The most massive stars become **black holes** when they die. After a large mass star explodes, a large amount of mass may remain. The gravity of the mass is so strong that gas is pulled inward, pulling more gas into a smaller and smaller space. Eventually, the gravity becomes so strong that nothing can escape, not even light.

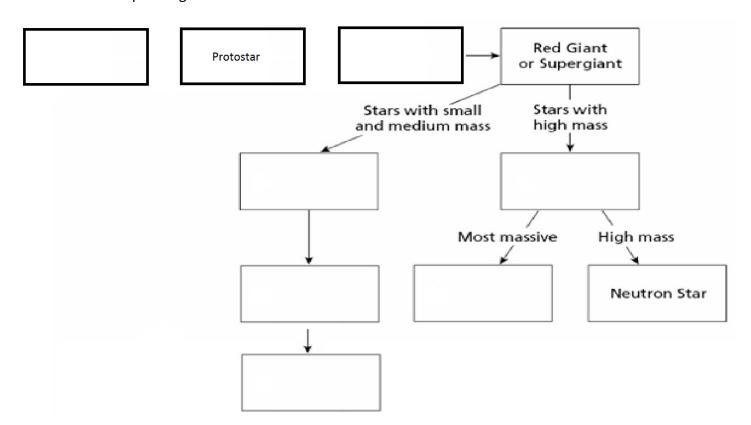
Section One- Sequencing: The storder order	tages below are not in the right order. Number the stages in the correct er.	
The star begins to run out	t of fuel and expands into a red giant or red super giant .	
Stars start out as diffused called a nebula.	clouds of gas and dust drifting through space. A single one of these clouds is	
What happens next depe	nds on the mass of the star.	
Heat and pressure build in	n the core of the protostar until nuclear fusion takes place.	
The force of gravity pulls	a nebula together forming clumps called protostars.	
Hydrogen atoms are fuse causing it to shine.	d together generating an enormous amount of energy igniting the star	
Section Two – Vocabulary: Mate	ch the word on the left with the definition on the right.	
black dwarf	e. star left at the core of a planetary nebula	
white dwarf	g. a red super giant star explodes	
nebula	c . what a medium-mass star becomes at the end of its life	
protostar	b . a large cloud of gas or dust in space	
supernova	a. exerts such a strong gravitational pull that no light escapes	
neutron star	d . the earliest stage of a star's life. No nuclear fusion exists yet	
black hole	f. the remains of a high mass star	
∑ &	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Section Three – Understanding N	Main Ideas - Low Mass Star (use the picture above)	
1. Red giant		
2. Protostar		
3. Stellar Nebula		
4. Black Dwarf		
5. The stage where our sun	is fusing hydrogen into helium	
6. White dwarf		
7. Planetary Nebula		

Section Four – Understanding Main Ideas - High Mass Star (use the picture above)

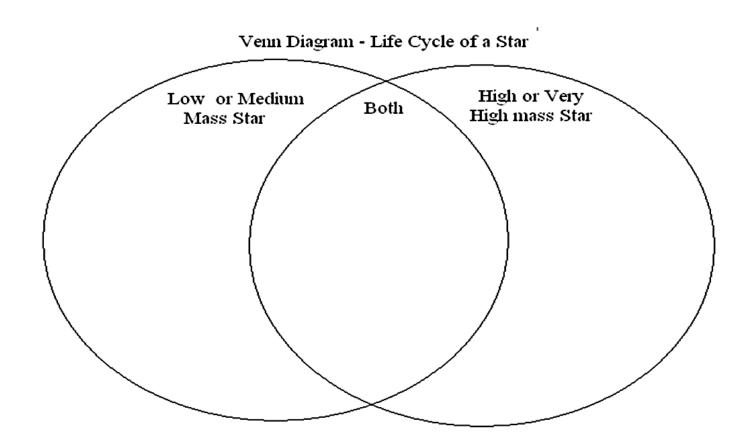
1. E	3lack	Hole
------	-------	------

_____ 2. Supernova

3. Stellar nebula


4. Gravity causes hydrogen gases and dust to condense into a protostar

_____ 5. Main sequence star


____ 6. When a star begins to run out of fuel and grows larger

____ 7. Neutron star

Section Five- Graphic Organizer. Fill in the blanks

Section six – Venn Diagram- Compare and Contrast

