The Periodic Table of The Elements

The Periodic Table

- The periodic table is a chart that organizes all the elements according to different categories
- Divided into three basic categories:
 - Metals
 - **Non-Metals**
 - Metalloids

Basic Organization

The periodic table is organized by:

- Atomic structure
- Atomic number
- Chemical and physical properties

Uses of The Periodic Table

The periodic table is useful in predicting:

- Chemical behavior of the elements
- Trends
- Properties of the elements

Atomic Structure Review

 Atoms are made of protons, electrons, and neutrons.

• Elements are atoms of only one type.

• Elements are identified by the atomic number (# of protons in the nucleus).

Energy Levels Review

 Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud.

• At least one energy level and as many as seven energy levels exist in atoms.

Energy Levels Review

 Electrons in levels farther away from the nucleus have more energy.

 Inner levels will fill first before outer levels.

Energy Levels & Valence Electrons

 Energy levels hold a specific amount of electrons:

1st level = up to 2
2nd level = up to 8
3rd level = up to 8 (first 18 elements only)

What are Valence Electrons?

- They are electrons in the outermost level are called... valence electrons.
- They are located in the outer most energy level
- They determine reactivity how elements will react with others to form compounds since the outermost level does not usually fill completely.

Using the Table to Identify Valence Electrons

- Elements are grouped into vertical columns because they have similar properties.
- These are called groups or families.
- Groups are numbered 1–18.

Using the Table to Identify Valence Electrons

- Group numbers can help you determine the number of valence electrons:
 - Group 1 has 1 valence electron.
 - Group 2 has 2 valence electrons.
 - Groups 3–12 are transition metals and commonly have 1 or 2 valence electrons, but may have more.

Using the Table to Identify Valence Electrons (cont.)

Groups 13–18 have 10 fewer than the group number. For example:

Group 13 has 3 valence electrons.
Group 15 has 5 valence electrons.
Group 18 has 8 valence electrons.

 Reactivity is a chemical property that determines how elements will react with others to form compounds.

• What makes an element reactive?

- Number of valence electrons each atom has
- When outer levels are full, atoms are stable.
- When they are not full, they react:
 Gain, lose, or share electrons

- The most reactive metals are the elements in Groups 1 and 2.
 - Elements in Group 1 need seven more electrons to fill their outer level.
 - Elements in Group 2 need six more electrons to fill their outer level.

• These groups are known as the "givers" because they easily give up their valence electrons to make a compound.

- The most reactive nonmetals are the elements in Groups 16 and 17.
 - Elements in Group 16 only need two more electrons to fill their outer level.
 - Elements in Group 17 only need one more electron to fill their outer level.

 These groups are known as the "takers" because they easily receive valence electrons to make a compound.

Groups

- Groups run vertically in the periodic table.
- They are numbered from 1–18.
- Elements in the same groups have the same number of valence electrons in the outer energy level with the exception of some transition metals.
- Grouped elements behave chemically in similar ways.

Group 1: Alkali Metals

- Contains: Metals
- Valence Electrons: 1
- Reactivity: Very reactive
- Properties:
 - Solids
 - Soft
 - React violently with water
 - Shiny
 - Low density

Group 2: Alkaline-Earth Metals

- Contains: Metals
- Valence Electrons: 2
- Reactivity: Very reactive, but less reactive than alkali metals (Group 1)
- Properties:
 - Solids
 - Silver colored
 - More dense than alkali metals

Groups 3-12 Transition Metals

- Contain: Metals
- Valence electrons: Commonly 1 or 2
- Reactivity: Less reactive than alkali and alkaline-earth metals
- Properties:
 - Higher density
 - Good conductors of heat and electricity

Groups 3-12 Transition Metals Below Main Table

- Contain: The Lanthanide and Actinide Series
 - These two rows are pulled out of sequence and placed below the main table to keep the table from being too wide.
 - Lanthanides are #'s 58–71.
 - Actinides are #'s 90–103.

Groups 3-12 Rare Earth Elements ~ Lanthanides

- Lanthanides follow the transition metal # 57 Lanthanum in Period 6
- Valence electrons: Commonly 3
- Reactivity: Very reactive
- Properties:
 - High luster, but tarnish easily
 - High conductivity for electricity
 - Very small differences between them

Groups 3-12 Rare Earth Elements ~ Actinides

- Actinides follow the transition metal # 89 Actinium in Period 7
- Valence electrons: Commonly 3 (but up to 6)
- Reactivity: Unstable
 - All are radioactive.
 - Most are made in laboratories.

Metalloids

- A zig-zag line that separates metals from metalloids
- Elements from Groups 13–17 contain some metalloids.

• These elements have characteristics of metals and non-metals.

Group 13: Boron Group

- Group 13: Boron Group
- Contains: 1 metalloid and 4 metals
- Valence Electrons: 3
- Reactivity: Reactive
- Other shared properties:
 - Solid at room temperature

Group 14: Carbon Group

- Contains: 1 non-metal, 2 metalloids, and 3 metals
- Valence Electrons: 4
- Reactivity: Varies
- Other shared properties:
 - Solid at room temperature

Group 15: Nitrogen Group

- Contains: 2 non-metals, 2 metalloids, and 1 metal
- Valence electrons: 5
- Reactivity: Varies
- Other shared properties:
 - All but N are solid at room temperature.

Group 16: Oxygen Group

- Contains: 3 non-metals, 1 metalloid, and 2 metals
- Valence Electrons: 6
- Reactivity: Reactive
- Other shared properties:
 - All but O are solid at room temperature.

Groups 17: Halogens

- Contain: Non-metals
- Valence Electrons: 7
- Reactivity: Very reactive
- Other shared properties
 - **Poor conductors of electric current**
 - React violently with alkali metals to form salts
 - Never found uncombined in nature

Group 18: Noble Gases

- Contains: Non-metals
- Valence Electrons: 8 (2 for He)
- Reactivity: Unreactive (least reactive group)
- Other shared properties:
 - Colorless, odorless gases at room temperature
 - Outermost energy level full
 - All found in atmosphere

Hydrogen Stands Apart

- H is set apart because its properties do not match any single group.
- Valence electrons: 1
- Reactivity: Very reactive, but loses or shares the 1 electron easily
- Properties:
 - Similar to those of non-metals rather than metals

Periods

- Periods run horizontally across the periodic table.
- Periods are numbered 1–7.
- All elements in a period will have the same number of energy levels, which contain electrons. Examples:
 - Period 1 atoms have 1 energy level.
 - Period 2 atoms have 2 energy levels.
 - Period 5 atoms have 5 energy levels.

Periods (cont.)

 In elements 1-20, moving from left to right across a period, each element has one more electron in the outer shell of its atom than the element before it. (You will learn about the others in HS Chemistry.)

 This leads to a fairly regular pattern of change in the chemical behavior of the elements across a period.